某易0基础小白也能学会的人工智能课
资源目录
第1天:
00_为什么要学习数学
01_引言和学习方法
02_feature和label
03_什么是机器学习
04_数据采集方式
05_knn算法入门
06_knn算法python实现
07_代码流程回顾
08_抽取knn函数
09_实验演示验证结论
10_评估模型好坏的方法,训练集和测试集
11_生成测试和训练数据集
12_调参选取最优的k
13_增加数据的维度
14_numpy加载特殊数据
15_欧式距离
16_二维空间距离的计算
17_代码增加一个维度
18_数据归一化
19_knn的feature的选择
20_向量和向量的运算
21_概念总结
22_使用矩阵和向量实现knn
23_ 房价预测简单框架
24_数据的归一化和标准化
附1_如何学习数学
附:问题1
第2天:
01_线性回归和Knn
02_线性回归解决什么问题
03_Excel进行线性回归
04_损失函数和最小均方差
05_excle来简单理解梯度下降
06_梯度下降的问题分析
07_求导简单入门
08_mse对b进行求导
09_Excel演示梯度下降&学习速率
10_偏导数分别求解m和b的导数
11_对m和b分别进行梯度下降
12_Python代码实现梯度下降
13_代码测试生成m和b
14_作业演示
附_作业讲解
第3天:
01_高等数学入门
02_问题描述
03_简单理解矩阵运算的现实含义
04_矩阵的形状
05_矩阵的加法
06_手动计算矩阵的乘法
07_矩阵的乘法不满足交换律
08_用numpy进行矩阵的乘法运算
09_矩阵运算计算m和b的偏导数
10_numpy矩阵运算演示获取m和b的偏导
11_用矩阵运算重构线性回归代码
12_对比程序执行的时间
13_增加数据的维度
14_函数模型的评估和错误率的计算
15_矩阵可以理解为一个变化函数
16_bmp是如何描述图片的
17_位图和svg图的区别
18_矩阵运算变化图片的位置
19_矩阵运算旋转图形
20_矩阵的缩放处理
21_图形变换综合案例
22_机器学习浅谈
23_sigmod函数引入
24_逻辑回归的步骤
附:扩展作业
第4天:
01_自然底数和sigmod函数
02_矩阵运算计算逻辑回归
03_逻辑回归简单实现
04_多分类问题
05_多分类的概率问题思考
06_多分类问题softmax公式
07_手写数字数据集
08_手写数字的识别原理
09_手写数字数据集的处理
10_手写数字的识别
11_手写数字bug处理
12_ai自动驾驶
13_神经网络的作用
14_多层神经网络演示
15_感知机
16_感知机数学原理
17_线性模型和非线性模型
18_交叉熵cross-entropy
19_概率简介
下载地址
建议:资源来源于网络公开文件,所有资料仅供学习交流,资源优质建议支持正版。
赞助:所收取费用仅用来维系网站运营,性质为用户友情赞助,并非售卖文件费用。
侵权:如分享内容侵犯了您的权益,请联系管理员邮zliao8@126.com删除处理。
知了资源网⎛⎝资源站⎠⎞ » 某易0基础小白也能学会的人工智能课